This is precisely where the CEC’s move away from ZNE in favor of a carbon reductions focus starts to make sense. This graphic comparison enables us to see that if we look only through the total Electricity Use lens (right side of Figure 2), we’ll be led toward heavily promoting daylighting and lighting efficiency measures, which will probably do little to reduce carbon emissions.
The total Energy Use (middle) lens, the basis for ZNE, would encourage a broader distribution of possible policy incentive options, with improved impact on carbon emissions reduction. However, it’s clearly the total Emissions lens (left) that we simply cannot ignore. This shows—even in the mild climate enjoyed by Palo Alto—that the highest building carbon emissions are from energy used for space heating,1 with water heating following closely behind. This means that if we focus only on reducing these two end uses, we’ll significantly reduce our carbon emissions from buildings.2
So how do we achieve this most effectively?
Fortunately for us, the CEC’s FAQ already has much of this covered. Special mention is made of the new residential standards encouraging “demand responsive technologies including battery storage and heat pump water heaters.” (PDF) This is big. It signals a clear move toward the electrification of buildings—a big step for California, where gas has been the fuel of choice for many years. With this combination of electrification, storage, and heat pump technology, hot water energy use will mostly be covered by renewable energy.
Less clear in the CEC’s FAQ is a solid plan for how California will be reducing building space heating demand. Not too coincidentally, space heating demand happens to be a particular specialty of the Passive House standard, which makes it a great approach for meeting the CEC’s policy goals to encourage buildings that best match renewable-energy production capacity, place least strain on the grid’s resources, and quickly and substantially reduce building emissions.
Targeting Loads
To illustrate how the Passive House approach plays out in a reasonably typical residential building situated close to Palo Alto, let’s take a look at the measured energy use of a home I designed with One Sky Homes. This single-family home has a treated floor area of 2,342 square feet, R-28 walls, an R-46 roof assembly, windows of R-3.3, a floor slab of R-14, and an airtightness reading of 0.3 ACH50. It’s an all-electric home, utilizing heat pump technology for both hot water and space conditioning, and boasts a 7.5-kW PV array installed on the south-facing roof, which powers both the house and an electric vehicle.
Time of Use Matters
The daily energy use of this house has remained remarkably stable, with a net annual use well into plus energy territory. However, the bigger picture of energy use versus generation provides the most insight here, and points to the same conclusions for energy use priorities as those in the Palo Alto report’s bar graphs comparing total Electricity Use, Energy Use, and Emissions.
A full year’s worth of daily outdoor temperature, electric usage, and energy production (see Figure 3) shows that without battery storage, this house-and-EV package still requires a utility. Even in our sunny California climate, despite an incredibly low overall demand (and an electric vehicle), the 7.5-kW array is unable to meet all of its energy needs between the months of November and February. (Imagine how much larger the wintertime gap between production and demand would be if the house were not so well insulated and airtight!) This not only means that time of use matters, but that seasonal use matters. As the Palo Alto report corroborates, our most critical variable is in fact winter space heating demand, which cannot be covered by short-term battery storage.